Note on the Weighted Internal Path Length of b-ary Trees
نویسندگان
چکیده
In a recent paper Broutin and Devroye (2005) have studied the height of a class of edge-weighted random trees. This is a class of trees growing in continuous time which includes many well known trees as examples. In this paper we derive a limit theorem for the internal path length for this class of trees. The application of this limit theorem to concrete examples depends upon the possibility to obtain an expansion of the mean of the path length. For the proof we extend a limit theorem in Neininger and Rüschendorf (2004) to recursive sequences of random variables with continuous time parameter.
منابع مشابه
Limit theorems for depths and distances in weighted random b-ary recursive trees
Limit theorems are established for some functionals of the distances between two nodes in weighted random b-ary recursive trees. We consider the depth of the nth node and of a random node, the distance between two random nodes, the internal path length and the Wiener index. As application these limit results imply by an imbedding argument corresponding limit theorems for further classes of rand...
متن کاملParallel Generation of t-ary Trees
A parallel algorithm for generating t-ary tree sequences in reverse B-order is presented. The algorithm generates t-ary trees by 0-1 sequences, and each 0-1 sequences is generated in constant average time O(1). The algorithm is executed on a CREW SM SIMD model, and is adaptive and cost-optimal. Prior to the discussion of the parallel algorithm a new sequential generation with O(1) average time ...
متن کاملEnumeration Of Highly Balanced Trees
Bereg and Wang defined a new class of highly balanced d-ary trees which they call k-trees; these trees have the interesting property that the internal path length and thus the Wiener index can be calculated quite easily. A k-tree is characterized by the property that all levels, except for the last k levels, are completely filled. Bereg and Wang claim that the number of k-trees is exponentially...
متن کامل1 5 Se p 20 05 On the number of t - ary trees with a given path length
We show that the number of t-ary trees with path length equal to p is exp ( h(t−1)t log t p log p (1 + o(1)) ) , where h(x)=−x log x−(1−x) log(1−x) is the binary entropy function. Besides its intrinsic combinatorial interest, the question recently arose in the context of information theory, where the number of t-ary trees with path length p estimates the number of universal types, or, equivalen...
متن کاملON THE EXTERNAL PATH LENGTH OF RANDOM RECURSIVE k-ARY TREES
In this paper, we determine the expectation and variance of Xn the external path length in a random recursive k-ary tree of size n.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics & Theoretical Computer Science
دوره 9 شماره
صفحات -
تاریخ انتشار 2007